Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 143(6): 1349-1357, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29479614

RESUMO

Synchrotron radiation spectromicroscopy provides a combination of submicron spatial resolution and chemical sensitivity that is well-suited to analysis of heterogeneous nuclear materials. The chemical and physical characteristics determined by scanning transmission X-ray microscopy (STXM) are complementary to information obtained from standard radiochemical analysis methods. In addition, microscopic quantities of radioactive material can be characterized rapidly by STXM with minimal sample handling and intrusion, especially in the case of particulate materials. The STXM can accommodate a diverse range of samples including wet materials, complex mixtures, and small quantities of material contained in a larger matrix. In these cases, the inventory of species present in a sample is likely to carry information on its process history; STXM has the demonstrated capability to identify contaminants and sample matrices. Operating in the soft X-ray regime provides particular sensitivity to the chemical state of specimens containing low-Z materials, via the K-edges of light elements. Here, recent developments in forensics-themed spectromicroscopy, sample preparation, and data acquisition methods at the Molecular Environmental Science Beamline 11.0.2 of the Advanced Light Source are described. Results from several initial studies are presented, demonstrating the capability to identify the distribution of the species present in heterogeneous uranium-bearing materials. Future opportunities for STXM forensic studies and potential methodology development are discussed.

2.
Dalton Trans ; 46(6): 1770-1778, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28074207

RESUMO

This study combines electron microscopy equipped with energy dispersive spectroscopy to probe major element composition and autoradiography to map plutonium in order to examine the spatial relationships between plutonium and fallout composition in aerodynamic glassy fallout from a nuclear weapon test. A sample set of 48 individual fallout specimens were interrogated to reveal that the significant chemical heterogeneity of this sample set could be described compositionally with a relatively small number of compositional endmembers. Furthermore, high concentrations of plutonium were never associated with several endmember compositions and concentrated with the so-called mafic glass endmember. This result suggests that it is the physical characteristics of the compositional endmembers and not the chemical characteristics of the individual component elements that govern the un-burnt plutonium distribution with respect to major element composition in fallout.

3.
J Phys Condens Matter ; 27(26): 265401, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26053594

RESUMO

We have investigated the behavior of uranium dioxide (UO2) under high static pressure using a combination of experimental and theoretical techniques. We have made Raman spectroscopic measurements up to 87 GPa, electrical transport measurements up to 50 GPa from 10 K to room temperature, and optical transmission measurements up to 28 GPa. We have also carried out theoretical calculations within the GGA + U framework. We find that Raman frequencies match to a large extent, theoretical predictions for the cotunnite (Pnma) structure above 30 GPa, but at higher pressures some behavior is not captured theoretically. The Raman measurements also imply that the low-pressure fluorite phase coexists with the cotunnite phase up to high pressures, consistent with earlier reports. Electrical transport measurements show that the resistivity decreases by more than six orders of magnitude with increasing pressure up to 50 GPa but that the material never adopts archetypal metallic behavior. Optical transmission spectra show that while UO2 becomes increasingly opaque with increasing pressure, a likely direct optical band gap of more than 1 eV exists up to at least 28 GPa. Together with the electrical transport measurements, we conclude that the high pressure electrical conductivity of UO2 is mediated by variable-range hopping.

4.
Br J Anaesth ; 93(5): 742-4, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15347607

RESUMO

Epulis of the newborn is a granular cell tumour that originates from the dental alveolar mucosa. We report a case of a neonate with multiple congenital masses of the alveolar mucosa who presented for surgery with a potential airway problem. Intubation was achieved uneventfully using a gaseous induction with a large facemask and displacement of the epulides to allow cautious laryngoscopy.


Assuntos
Anestesia por Inalação/métodos , Neoplasias Gengivais/cirurgia , Feminino , Humanos , Recém-Nascido , Intubação Intratraqueal/métodos , Máscaras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...